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Wave pattern formation in a fluid annulus with a 
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The phenomenon of pattern formation of free-surface waves of a fluid confined in 
an annulus the inner wall of which vibrates radially, is investigated both theoretically 
and experimentally. Although the waves are excited by harmonic axisymmetric defor- 
mations of the inner shell, depending on the vibration frequency both axisymmetric 
and non-symmetric wave patterns may arise. 

Experimental observations have revealed that waves are excited in two different 
resonance regimes. The first type corresponds to forced resonance, in which axisym- 
metric patterns are realized with eigenfrequencies equal to the frequency of excitation. 
The second kind is parametric resonance, in which case the waves are ‘transverse’, 
with their crests and troughs aligned perpendicular to the vibrating wall. These 
so-called cross-waves have frequencies equal to half of that of the wavemaker. 

Both kinds of resonance were investigated theoretically using Lame’s method of 
superposition. It was shown experimentally that the pure forced resonant standing 
waves are not realized when the amplitude of excitation is beyond the threshold of 
parametric resonance for non-symmetric waves. The experimental observations agree 
very well with the theoretical results. 

1. Introduction 
It is well known that vibrating bodies (partially) immersed in a fluid may generate 

various types of wave patterns at the free surface of the fluid. An example is the 
formation of cross-waves, as first discussed by Faraday (1831). In his pioneering 
experiments, Faraday observed the occurrence of cross-waves at the surface of a 
vibrating plate immersed in a fluid. Cross-waves have crests perpendicular to the 
wavemaker (hence their name), and their frequency is half that of the wavemaker. 
As discussed in the review paper of Miles & Henderson (1990), cross-waves emerge 
from a symmetry-breaking instability of the directly forced wave motion. 

Cross-waves have been the subject of many studies during the last 25 years or 
so (for a detailed survey, see Miles & Henderson 1990). It was Garrett (1970) who 
first showed how energy is transferred from the wavemaker to the cross-wave in a 
mathematical model including a mean motion of the free surface. He mentioned, 
however, that the primary (mean) motion of the free surface is not sufficient to supply 
the energy to the cross-waves. Therefore, the cross-waves must derive their energy in 
some way directly from the wavemaker. 

Ukraine. 
t On leave from Institute of Mechanics, National Academy of Sciences of Ukraine, 252057 Kiev, 
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In the experimental work of Tatsuno, lnoue & Okabe (1969) the transition from 
longitudinal to cross-waves at a vertically vibrating half-submerged spherical body 
was studied for the first time. For the linear case this problem was described 
analytically by Hocking (1988) and for nonlinear case it was solved by Becker & 
Miles (1992). Becker & Henderson (see Appendix to Becker & Miles 1991) have 
repeated the original experiment of Tatsuno et al. (1969), although no recordings of 
the various wave patterns were given, probably because the main goal of that paper 
was the theoretical analysis of the radial cross-waves. Taneda (1991) performed similar 
experiments, and he presents a comprehensive set of photographs of the visualized 
motion induced by the oscillating sphere. Taneda kept the excitation frequency 
constant, but by increasing the amplitude of the sphere oscillation he observed the 
transformation of directly forced axisymmetric waves into parametrically excited non- 
symmetrical patterns. Similar observations were made by Taneda (1994) for the case 
of a half-submerged vertically oscillating horizontal cylinder of finite length. 

In a theoretical study, Becker & Miles (1991) investigated the behaviour of cross- 
waves in an annular fluid region induced by radial vibrations of the inner cylinder. 
These authors made a modification to Havelock’s (1929) solution of the wavemaker 
problem, and their solution contains all the information about the behaviour of ax- 
isymmetric modes and the influence of these modes on the stability of the resonant 
cross-wave. In Krasnopolskaya & Podchasov (1992a,b) the transition from longitudi- 
nal waves to cross-waves was studied in an annular fluid tank for a rotational wave 
deformation of the surface of the inner cylinder. The theoretical approach applied in 
those papers was based on the variational principle of Luke (1967). In the present 
study we will address the same wave-tank configuration, but we use a different method 
for solving the wavemaker problem, applying Lamk’s (1 852) superposition method. 
This method allows one to construct a simpler mathematical model, which shows how 
the cross-wave can be generated directly by the wavemaker motion without having 
to take into account the presence of any axisymmetric waves at the free surface. This 
simpler mathematical model of the excitation of the resonant cross-waves may be the 
easiest way to understand pattern formation on the fluid’s free surface, the stability 
of the system and the influence of other modes with eigenfrequencies close to the 
resonant mode (the frequency spectrum is usually very dense), since these modes can 
be considered as also being under parametric resonance. In addition to this theoretical 
analysis we have carried out laboratory experiments in an annular wave tank with a 
radially vibrating inner cylinder. The resonant wave patterns resulting for different ex- 
citation frequencies were recorded photographically, and the transition from directly 
forced axisymmetric waves to parametrically excited non-axisymmetric patterns has 
been observed. Accurate measurements with a wave gauge have provided important 
information about the spectral characteristics of the two types of resonance. 

The paper is organized as follows. In 92 we describe the laboratory configuration 
as well as some observed typical wave patterns and their spectral characteristics. The 
theoretical analysis of both the axisymmetric and the non-axisymmetric resonance 
modes is presented in $3.  A comparison between the laboratory measurements and 
the theoretical results is described in $4. 

2. Laboratory experiments 
2.1. Experimental arrangement 

The experiments were performed in a cylindrical tank with an inner diameter 2R2 = 
28.8 cm and a total depth of 20 cm. An inner cylinder with diameter 2r-1 = 9.0 cm 
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FIGURE 1. Schematic of the experimental set-up: 1, gas supply; 2, pressure regulator; 3, manometer; 
4, pressure vessel; 5, frequency generator; 6, magnetic valve drive; 7 and 8, magnetic valves; 9, gas 
inlet; 10, gas outlet; 11, working fluid; 12, rubber membrane with vibrations x around the mean 
position a. cos qx (dashed line). 

was placed coaxially in the tank, and the annular region was filled with ordinary 
tap water up to a depth d = 9.0 cm. The hollow inner cylinder was perforated and 
tightly covered by an elastic rubber membrane (thickness 0.08 cm) that was fixed 
by two flanges at the top and bottom. The air pressure inside this cylinder could 
be changed periodically by a control system as schematically shown in figure 1. 
By alternatingly opening and closing the magnetic valves 7 and 8 (see figure l), 
respectively, the air pressure inside the cylinder could be varied periodically from 1.1 
bar to 1.3 bar (overpressure), at a prescribed frequency cc). As a result, the rubber 
cover performed radial vibrations at this frequency w .  In terms of the cylindrical 
coordinates r ,  8, x (with Y the radial coordinate measured from the common axis, and 
x the axial coordinate, with x = 0 at the unperturbed free surface) the shape of the 
vibrating rubber sheet is to a good approximation represented by 

x(x, t )  = (a0 + a1 cos w t )  cos yx, (2.1) 

where y = n/dO, with do = 2d the axial size of the rubber cover. Note that do is 
twice the water depth d, so that the maximum vibration amplitude occurs at the 
free surface. The amplitude coefficients a. and a1 could be varied by changing the 
pressure in the inner cylinder (see figure l), but in all cases a0 2 a1 and a0 + a1 was 
approximately equal to 1 cm. Experiments were carried out for excitation frequencies 
f e  = w/2n in the range 3 Hz to 30 Hz. In the experiments a1 decreased from 0.4 cm 
for 3 Hz to 0.02 cm for 30 Hz, so that ao,al<rl. 

The wave patterns on the free surface of the fluid were visualized by an ordinary 
light source that was mounted beside the tank, directed at some angle to the fluid 
surface, and the patterns were recorded from above by a camera that was mounted 
at some distance above the tank. 

The instantaneous surface elevations were locally measured by a conductance-type 
wave gauge, originally designed by Fryer & Thomas (1975). Although in the set-up 
described by these authors the probe consisted of two parallel metal wires, in our 
experiments a single wire was lowered vertically into fluid, while a metal plate was 
placed horizontally at the tank bottom. The conductance between the probe wire and 



232 T. S. Krasnopolskaya and G. J .  F. van Heijst 
the plate is proportional to the immersion depth of the wire and the conductivity of 
the fluid. The conductance, and thus the probe immersion depth, can be measured 
by applying a potential difference between the wire and the plate and measuring the 
resulting electric current. For a constant fluid conductivity this current was found 
to be linearly proportional to the probe immersion depth. In order to increase the 
conductance, salt was added to the fluid (60 mg per litre tap water). 

In most experiments the probe was placed at a distance of approximately 2.5 cm 
from the outer cylinder, with an immersion depth of typically 1 cm. For details of 
the electronic circuitry, the reader is referred to Fryer & Thomas (1975). The wave 
gauge signal was sampled by a personal computer and recorded (together with the 
signal of the frequency generator in the pressure control system) for further analysis. 

2.2. Some observations 
At relatively low excitation frequencies ( 3  ,< f e  G21.82 Hz) the free surface of 
the fluid shows concentric, circular wave patterns, corresponding to directly excited 
axisymmetric waves with nodes at concentric circles between the two cylinders. An 
example of this type of wave pattern is shown in figure 2 for the case f e  = 11.13 Hz: 
the photograph (figure 2a) shows concentric black and white rings, which correspond 
to surface depressions and elevations, respectively. Owing to uneven illumination the 
rings visible on the photograph are slightly irregular, and in some cases not even 
closed. Visual in situ observations, however, revealed a perfectly circularly symmetric 
wave pattern, with nine nodes in the radial direction. Note that the wave pattern at 
some distance from the inner cylinder is that of standing waves: half a period later 
the areas of surface elevation have become areas of surface depression, and vice versa. 
The nodal circles thus approximately coincide with circular boundaries between the 
black and white rings. In a narrow band close to the inner cylinder, however, the 
wave motion is not that of standing waves, owing to the radial displacements of the 
cylindrical wall. This type of wave motion is observed on photographs like the one 
in figure 2(a )  in the form of two thin white rings (rather than a single, wider ring) 
next to the wavemaker. The signal in mV of the wave gauge (placed at a distance 
2.5 cm from the outer cylinder) is shown in figure 2(b), together with the signal of the 
frequency generator that drives the pressure valves, and therewith the wavemaker. 
Visual inspection reveals that it has a basic frequency that corresponds to that of the 
wavemaker. In order to make a more accurate comparison, the fast Fourier transforms 
(FFTs) of both signals are shown in figure 2(c)  as a function of the frequency f T .  
In this graph (and in similar graphs that will be presented later) the dashed curve 
represents the gas pressure change in the wavemaker, while the solid curve represents 
the measured wave signal. Although the FFTs could be determined for frequencies up 
to 1500 Hz, only the interval 1-100 Hz is shown because it contains the most relevant 
information. The pressure signal has a pronounced peak at the excitation frequency 
f and also some peaks at distinct higher frequencies, indicating higher-frequency 
components of the signal. The FFTs of the free-surface waves have the largest peak 
at the excitation frequency fe ,  and a smaller one at a frequency 2 f e .  Since the FFT 
is a power spectrum (indicating the power contained at each frequency), the ratio of 
the peak heights corresponds to the ratio of the squared wave amplitudes (i.e. the 
wave energy) at those frequencies. Apparently, the directly excited mode contains 
approximately 83 times more energy than the wave mode with frequency 2 f e .  

The excitation frequency was systematically increased, and up to the value of 
21.82 Hz only circular wave patterns were observed, with the number of nodal 
circles increasing with increasing frequency. While the excitation frequency was 
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FIGURE 2. 
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systematically increased in the range 3 G f e  G21.82 Hz, the amplitude a1 of the 
wavemaker oscillations decreased from 0.4 cm to 0.08 cm. The effective fluid-level 
rise in the annulus associated with the radial vibrations of the membrane (see 
(3.14)), was hence reduced from approximately 0.2 cm (with amplitude 0.1 cm) to 
approximately 0.04 cm. These fluid level oscillations were not observed to lead 
to any non-symmetrical pattern formation with frequency 0.5fe. On the contrary, 
only symmetrical patterns were observed whose FFTs had the largest peak at the 
excitation frequency f e .  We may thus conclude that the fluid level oscillations did 
not influence the pattern formation at the lower excitation frequency. This implies 
that the ‘forced resonance mechanism’ is apparently stronger than the mechanism of 
parametric variation of the gravitational acceleration of the fluid level at these low 
excitation frequencies. 
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FIGURE 3. Wave activity at excitation frequency f e  = 21.82 Hz: (a)  photograph showing the 
free-surface wave pattern; ( b )  pressure (i) and wave gauge (ii) signals; (c) FFTs of these signals. 

While keeping the excitation amplitude of the wavemaker (i.e. the pressure varia- 
tions) approximately constant at a value a1 = 0.08 cm, the first non-axisymmetrical 
wave pattern was observed at excitation frequency f e  = 21.82 Hzj-. A photograph 
of the recorded pattern is shown in figure 3(a),  while the pressure and wave gauge 
signals and their FFTs are presented in figures 3(b) and 3(c), respectively. The photo- 
graph clearly reveals the azimuthal structure of the wave pattern, with white patches 
(surface elevations) arranged on circles of different radii. By counting the number 
of these patches on a certain radius, it is found that the azimuthal wavenumber is 
n = 17 (independent of the radius). The radial wavenumber can be determined in the 

t It should be noted that in experiments with larger excitation amplitudes the transition to 
non-axisymmetric patterns was observed to occur a t  somewhat lower frequencies. For example, 
with amplitude a1 = 0.1 cm, the transition occurred at f c  = 19.96 Hz. 
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FIGIJRE 4. Photographs of the free-surface waves at excitation frequency f e  = 26.00 Hz: 
( a ) ,  ( h )  top views at different times 

same way (although in a number of cases this is difficult to do from the photographs; 
direct visual observations may be helpful then), and from figure 3(a )  one finds m = 8. 
Figure 3(b) shows that the basic frequency of the wave gauge signal is approximately 
equal to half the excitation frequency. This is observed even better in the FFTs of 
both signals, see figure 3(c): although the power spectrum of the surface waves shows 
a well-defined peak at the excitation frequency j(,, a much higher peak occurs at a 
frequency close to 0.5fe. The ratio of the peak values is about 28, which implies 
that the energy contained in the waves with frequency = 0.5fe is approximately 28 
times larger than the energy of the waves with frequency j e .  In other words, the 
waves excited at frequency = 0.5fe contain about 96.5% of the energy present in 
these two types of waves, whereas those with frequency j r  contain only 3.5%. This 
difference was even larger in an experiment with a larger vibration amplitude, in 
which the non-axisymmetrical pattern occurred at .f'(, = 19.96 Hz. The ratio of the 
energies contained in both types of waves was found to be close to 150, implying 
that in this case the directly excited waves (at frequency j1>) contain only 0.6% of 
the energy, while those with frequency = 0.5fc carry 99.4%. For this case the fluid 
level oscillations with frequency f e  were negligibly small, having an amplitude at 
least 12 times smaller than that of the non-symmetrical pattern, which rules out their 
role in the excitation of the non-symmetric waves. As will be discussed in detail in 
$3.2, the direct wavemaker excitation is the principal generation mechanism for the 
non-symmetric pattern. 

Both the azimuthal and the radial wavenumber of the wave pattern increases with 
increasing excitation frequency. Figures 4(a) and 4(b) show two photographs of the 
free-surface pattern excited at .f'? = 26.00 Hz, taken at different moments. Analysis 
of the photographs yields n = 20, m = 10. The power spectra of the pressure and 
wave gauge signals show the same features as in the non-axisymmetrical case with 
f e  = 21.82 Hz (see figure 3c): again most (97%) of the energy is contained in the 
wave excited at half the wavemaker's frequency, rather than in the directly excited 
wave with the frequency j1,. 

The maximum frequency that could be reached with the laboratory configuration 
was fC. = 30.10 Hz. In that case one observes a pattern essentially similar to the 
other non-axisymmetric cases, now with n = 25 and m = 11. Again, the wave with 
frequency 0.5f, contains most of the energy. 
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From these experimental observations, carried out at different excitation frequen- 
cies, we can conclude that, although the excitation is purely axisymmetric, two 
kinds of resonance regimes exist. The first type is forced resonance, in which the 
free-surface waves are circular, with a frequency equal to the excitation frequency 
fe. The second type of resonance is the so-called parametric resonance, in which 
the excited waves are transverse, i.e. with their crests and troughs aligned per- 
pendicular to the vibrating wall. The latter type of resonance appears through 
symmetry-breaking (note that the excitation is purely axisymmetric, i.e. without any 
azimuthal modes), and occurs with a frequency of approximately 0.5fe. More- 
over, in the cases considered, the energy carried by the parametrically excited 
cross-waves is at least 20 times larger than that contained by the directly forced 
waves. From this fact one may conclude that the cross-waves derive their en- 
ergy directly from the wavemaker rather than from the axisymmetric (or other) 
waves with frequency fe ,  since these only contain a very small portion of the wave 
energy. 

3. Theoretical analysis 
Now we will theoretically consider the specific features of both types of resonance. 

It is useful to relate the fluid motion to the cylindrical coordinate system ( r ,  8, x) 
introduced in the previous section. The fluid has an average depth d ;  the average 
position of the free surface is taken as x = 0, so that the solid tank bottom is 
at x = -d. The fluid is confined between a solid outer cylinder at r = R2 and a 
deformable inner cylinder at average radius RI = rl +ao(d)-' JPd cos q x d x  = rl+2ao/n. 
This inner cylinder acts as the wavemaker and vibrates harmonically in such a way 
that the position of the wall of the inner cylinder is r = r1  + ~ ( x , t )  = R1 + ~ l ( x , t ) ,  
with x given by (2.1) and x1 = x - 2ao/n. 

Assuming that the fluid is inviscid and incompressible, and that the induced motion 
is irrotational, the velocity field can be written as v = V4, with 4 ( r 7  8, x, t )  the velocity 
potential. The governing equation is 

0 

V 2 4  = 0 on (R1 + X I  < r < Rz,O < 8 < 2n,--d < x < [) (3.1) 

where [ ( r ,  8, t )  is free-surface displacement. 
The dynamic and kinematic free-surface boundary conditions are 

4x = V 4  * V[ + Ct at x = [ ( r ,  8, t) ,  (3.3) 
with g the gravitational acceleration, T the air-fluid surface tension and p the fluid 
density, F ( t )  is an arbitrary function of time (Lamb 1932). Here and later the 
subscripts x ,  r ,  8, t signify partial differentiation. 

The normal velocity vanishes at the solid flow boundaries: 

4r = O  at r = R2, 

& = O  at x = -d,  

while the kinematic condition at the vibrating inner cylinder is 

q$ = X r  + V 4  - VX at r = Rl + xl(x, t).  
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Effects of the meniscus and capillarity at the contact line of the fluid’s free surface and 
the annular container walls were not incorporated in the formulation of the problem. 
We assume that 

From the experimental observations we may conclude that the pattern formation 
has a resonance character, every pattern having its ‘own’ frequency. Assuming that 
patterns can be described in terms of normal modes with characteristic eigenfrequen- 
cies, we expand the potential 4 and the free-surface displacement 5 in a complete set 
of eigenfunctions, which are determined by linear theory. The amplitudes of these 
eigenfunctions are governed by the nonlinear problem (3.2)-(3.3). 

= 0 at r = R1 and r = R2. 

The solution of the linear general non-axisymmetric boundary problem 

V 2 4  = 0 on (R1 < r < R2,O 6 0 < 2n,-d d x < O), (3.7) 

4, = il at x = 0, 

4, = O  at x = - d ,  

4,. = O  at r = R,, 

4 r  = X I  at r = R1,  

48 / O = O  = $0 / f t=2 r r ,  

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

(3.8d) 

(3.8e) 

under arbitrary excitation of the inner cylindrical shell w(O,x, t )  can be found in 
several ways. One of them traces back to Stokes’s paper dated 1847 (see Bromwich 
1959, Art. 128), also known as Grinberg’s method (Lebedev, Skal’skaya & Uflyand 
1966, Ch. V). Here the potential 4 is presented as Fourier series of the complete 
system of eigenfunctions in the radial and azimuthal coordinates with the coefficients 
as functions of the coordinate x. The inhomogeneous boundary condition at Y = R1 is 
transformed into the right-hand side of equation (3.7) using the ordinary procedure of 
the Fourier series representation for the derivatives on r .  The solutions of the sequence 
of inhomogeneous linear differential equations in x for the expansion coefficients with 
inhomogeneous boundary conditions in x can be easily found by analytical techniques. 
This approach yields, however. rather cumbersome expressions, in which the input of 
the wavemaker motion w(H, x, t )  is not seen in a clear way. 

In order to obtain a more lucid picture of the transmission from the wavemaker 
motion to the free-surface motion it is more convenient to use another analytical 
method, namely, the method of superposition. The authors are of the opinion 
that the application of this method is without doubt preferable for the problem in 
question. I t  provides a clear physical picture of the mechanism of energy transfer 
from the wavemaker to the mean level variation and every eigenmode of free-surface 
oscillations. The idea of the superposition method was first proposed by Lam6 (1852) 
in his classical lectures on the theory of elasticity. A similar method was applied by 
Hocking & Mahdmina (1991) to study moving capillary-gravity waves produced by 
a wavemaker. 

According to this superposition method, the potential 4 can be written as the sum 
of three harmonic functions: 

(3.9) 4 = 4 0  + 41 + 42. 
The potential 40 is governed by the following axisymmetric boundary problem : 

V2& = 0 on (R1 d Y < R2,0 < 0 < 215-d < x < 0), (3.10) 
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(4o )x  = (Colt at x = 0, (3 .11~)  

( 4 o ) x  = 0 at x = -d, (3.11b) 

( 4 0 ) ~  = 0 at r = R2, (3 .11~)  

( 4 o ) r  = (wo)t at r = R1, (3.11d) 

(3.11e) ( 4 o ) e  L o  = (4010 /0=2~, 

where 

(3 .12~)  

(3.12b) 

represent the mean level elevation of the fluid free surface and mean displacement 
of the cylindrical wavemaker, respectively. These mean values are connected by the 
relationship 

(lO)t& - R:) - 2ndR1(wo)t = 0 (3.13) 
expressing mass conservation for the incompressible fluid. Thus, for the particular 
case of the wavemaker excitation (2.1) it is easy to derive from this relationship the 
mean level oscillation: 

(3.14) 

The potential (61 is governed by the following linear problem: 

V 2 $ 1 = 0  on (R, d r ~ R ~ , O ~ O d 2 n , - - d , < x ~ O ) ,  (3.15) 

(41 )x  = (i - i o h  at x = 0, 

( 4 1 ) x  = 0 at x = -d, 

(3 .16~)  

(3.16b) 

(4l)r = 0 at r = R2, (3 .16~)  

(41)r = 0 at r = RI, (3.16d) 

(3.16e) 

where the conditions in the radial direction are homogeneous and in the azimuthal 
direction periodic. So 41 will be expressed as a sum of complete systems of eigen- 
functions in the radial and azimuthal coordinates. 

(4ih le=o = ( 4 i ) e  /0=2~,  

While the potential 42 is governed by 

V 2 & = 0  on (R, d r d R z , O d O d 2 n , - d ~ x d O ) ,  (3.17) 

( 4 2 ) x  = 0 at x = 0, (3 .18~)  

( 4 2 ) x  = 0 at x = -d, (3.18b) 

(42)r = 0 at r = R2, (3.18~)  

( 4 2 ) r  = (W - W O ) ~  at r = R1, (3.18d) 

(3.18e) 

it can be represented as a sum of eigenfunctions in the vertical (homogeneous 

(4210 le=o = ($210 10=2~ ,  
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The boundary condition (3.16~) provides a relation between the amplitudes of the 

$y(t)  = kty(t)(kij tanh kijd)-'. (3.26) 

The velocity potential $2(r, 8, x, t )  can be formulated in terms of an ordinary Fourier 
series in cosalx with a/ = ln/d and in (cosie, sinie), so that the general solution 
reads 

$2 = 7 ~:t( t )cos  a/xfil(a/r)(cos ie, sin ie), (3.27) 

series (3.20) and (3.25) in the form 

m m  

i=O I=1 

with 

(3.28) 

where li and K i  are the ith-order modified Bessel functions of the first and second 
kind, respectively. 

Using the boundary condition (3.18d) we can explicitly define the amplitudes @ff(t) 
as 

@;f(t) = *i"l'"(t) 

where di0 is the Dirac function and ?b,(z) = dtol(z)/dz. 
To define the unknown functions <ifi'"(t), representing the amplitudes of directly 

excited free-surface waves, we have to apply the linearized dynamic free-surface 
boundary condition (3.2): 

(3.30) 

where d)  represents the total velocity potential according to (3.9). Substitution of (3.9) 
into (3.30) leads to a functional equation in r in the interval (RI, R2). Representing 
the radial functions r2/2 - Ri In r and f i l (a l r )  in the form of the expansions 

r2 

2 
---R,21nr=aoo+ 

j= 1 

(3.31) 

(3.32) 

where the coefficients aoo, aoj, bio~ and biIj can be found by straightforward integration, 
we can write down the infinite sequence of ordinary differential equations for the 
functions (;( t )  : 

(3.33a) 



Wave pattern formation in a.fluid annulus 24 1 

where PI ,  = k,, tanh k,,d and 
1 j z  

o,, = [ ( g k , ,  + :ki) tanh k,,d] for i = 0,1,2 ,... and j = 1,2,3 ,.... (3.34) 

The linear equations (3.33a,b) represent typical equations of the forced oscillations 
with eigenfrequencies oII. Solving these linear differential equations with specified 
initial conditions under prescribed time dependence of the functions wg( t) and w,"i"( t), 
we can easily obtain the amplitudes i1,(t) of the fluid free-surface waves in an explicit 
manner. 

In the subsequent sections the nonlinear problems for resonant eigenmodes will be 
solved in the same way. First, to find the amplitudes of the potential 42 the nonlinear 
boundary condition (3.6) is applied with the expansion precedure in the series with 
cosalx and (cosi8,siniB) functions. The second step is to determine the relations 
between the amplitudes of potential 41, the functions 4L,(t) and the amplitudes G,(t) 
of the fluid free-surface waves according to the nonlinear boundary condition ( 3 . 3 ) .  
And finally, the dynamic condition (3.2) is taken into consideration for the closure 
step, namely, to obtain nonlinear differential equations for resonant amplitudes under 
the prescribed excitation ~ ( x ,  t )  given by (2.1). 

3.1. Symmetric patterns 

First we examine the appearance of axisymmetric free-surface wave patterns under 
forced resonance, when 

with o O m  the eigenfrequency for the axisymmetric mode, given by (3.34) for i = 0. 

eigenmode yo  m, corresponding to the eigenfrequency 00 m, as 

0 m o m ,  ( 3 . 3 5 )  

We assume that the wave pattern at the free surface can be described by the 

(3.36) 

In order to find the solution of the nonlinear problem for the amplitude of this 
eigenmode we introduce the small parameter 

(3.37) 

where al  is the amplitude of the wavemaker vibrations, which we assume to be small 
(we also take a0 = .Po). Following Miles (1984a,b,c), we express the amplitude of this 
mode as 

(om(t) = d3/2[p(z) cos at + q ( z )  sin a t ]  + ~ ~ / ' / 2 [ ~ ~ ( z )  cos 202 

+ Bo(z) sin 2u t  + Co(z)], (3.38) 

where /2 = k;: tanh(komd) and 

is the dimensionless 'slow' time. If ( ( r ,  8, t )  has the form (3.36), then 4 ,  is approximated 

z = f2J30t (3.39) 

by 

(3.40) 

because of the same expansion of the eigenfunction yIc/I"(r, O ) ,  see (3.20) and (3.25). 
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To determine the amplitude 4orn(t) we take into account the effect of the potentials 

@o and @ 2  under the constraint of the nonlinear boundary conditions (3.3) and (3.6). 
The solution that satisfies the nonlinear condition (3.6), with the inner-wall vibration 
~ ( x ,  t )  given by (2.1), is 

and 

Taylor expansion of the nonlinear boundary conditions (3.3) and (3.2) about x = 0 
leads to the following third-order reduced boundary conditions : 

1 
( 4 l ) x  + ( 4 o ) x  + i ( 4 l ) x x  + i 2 ( 4 1 ) x x x  = it + ( 4 l ) r i r  + + h ) s i s  + ( 4 l ) r x i i r  

1 + (hM’(4iL + (4i)ri(4i)rx + 7(4i)oC(4i)ex = f‘(t) at x = 0. (3.44) 

In this derivation we took account of the condition (3.18~) and of the order of 42, 
see (3.41). 

Application of the nonlinear boundary condition (3.43) (after multiplication by 
yom(r)r /Nom and integration over the distance between the two cylinders) yields the 
following result for the amplitude of 41 : 

4 o m f t )  = Yo[l - Y l i O m  + Y2i:mlkom(t). (3.45) 

Here [orn(t)  is the time derivative of [o,(t); furthermore, 

yo = [kom tanh(ko,d)]-’. (3.46) 

The other constant coefficients are evaluated in the Appendix. 
By substitution of the expression (3.45) into (3.44), multiplication by yom(r ) r /Nom,  

integration over the distance between the two cylinders and averaging over the fast 
time cut, one finally obtains the evolution equations for the amplitudes p and q: 

9 dz = - [P  + ;4p2 + q2)]q, (3.47u) 

(3.47 b) dq 
- dz = [P + iA(P2 + q2)1p, +y 
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and the amplitudes of the secondary harmonics 

(3.48) A - 1 ”  ’ 
0 - gA1/3(p- - q 2 ) ;  Bo = 3 A y 3 p q ;  co = $y4(p2 + q 2 ) ,  

with A,  y3, y4 constant coefficients (see the Appendix), and 

Weak, linear damping may be incorporated at this stage by replacing d/dz by 
(d/dz + a) in (3.47), where 

(3.50) 

and do, is the ratio of actual to critical damping for free oscillations of the resonant 
mode (and 2n&, is the logarithmic decrement) (see Miles 1967). Therefore, we have 

60 rn 

,313 
a=--  

(3.51a) 

(3.51b) 

Because of the presence of the term y ,  which depends on the function of excitation 
(2.1) (and therefore on $o and $*, see (3.41)-(3.42)), in the evolution equation (3.51b) 
and due to the nonlinear coupling of the equations, the axisymmetric resonance 
mode of the free fluid surface will have non-zero amplitudes p and q. The typical 
fixed-points solution which corresponds to harmonic motions (dp/dz = 0; dq/dz = 0) 
is given by 

(3.52) 

Thus, the amplitude of the resonant mode [orn(t), see (3.38), has the order O ( F ~ / ~ )  
because of the realization of the resonance condition (3.35) (or, more precisely, the 
relation w - worn = E ~ / ~ o P / ~ )  with two non-zero components p and q. Other modes 
will have amplitudes of O(E),  as non-resonant modes are proportional to the amplitude 
of excitation. 

So we have shown that axisymmetrical excitation (2.1) creates an axisymmetrical 
pattern which corresponds to one resonant symmetrical mode (under resonance 
condition w = worn + f2/3wOp/2). 

3.2. Non-symmetric patterns: resonance mode model 
Next we will consider the wave pattern that is realized during parametric reso- 
nance, when the excitation frequency w ,  see (2.1), is twice as large as one of the 
eigenfrequencies, i.e. 

In this case the excitation (2.1) selects vibrations with respect to the normal eigen- 
modes ~&;(n # 0). So we consider a mathematical model in which the free-surface 
displacement can be approximated only by the resonance mode and the mean level 
displacement 

0 NN 2wn,. (3.53) 

1 

(3.54) 
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Here ynm(r,8) = y(r,t9) can either be yt;,(r,8) or vim(r,8), since the angular 
momentum of the considered excitation is zero; arbitrarily, we take ynm(r,O) = 

Xnm(knmr) cos no. 
We seek the functions lnm in the following form (see also Miles 1984~):  

(3.55) 

where ,I1 = k;; tanh(k,,d) is the reference length, el = alwim/g is a new small positive 
parameter, and 

T 1  = 3t .1ot  1 (3.56) 

is a dimensionless slow time; the variables p1(71), q l ( ~ l )  are slowly varying dimension- 
less amplitudes of the dominant mode. 

The most important term among the non-resonant modes (Garrett 1970; Becker 
& Miles 1991) is the primary (mean) motion [oo( t )  (3.14). For the tank geometry as 
used in the experiments (when R: - R: > Rld) 

cm(t) = 0.27~1 COS ot + O ( E ~ / ~ ) .  (3.57) 

The smallest value of el corresponds to the excitation frequency for the first non- 
symmetrical pattern. For f e  = 19.96 Hz, el = 0.4 (when al=0.1 cm), so coo(t)  has 
O ( E : / ~ ) .  For the last non-symmetrical pattern at fe = 30.1 H z ,  [oo(t) has O(e:). Thus, 
loo(t) is negligibly small; however for the case of a basin when R; - R: < Rid, the 
mean motion coo(t) may be important. The oscillations Coo will not be incorporated in 
the nonlinear terms of the boundary conditions when keeping the terms to the third 
order, namely to O ( E ; ' ~ ) ,  because in the geometry considered the solutions of the 
linear problem for coo (3.57) are evaluated as corresponding to O ( E : / ~ ) .  Nevertheless, 
the influence of the potential q50, expressed by (3.42) with el = e/4, will be taken into 
account in the nonlinear terms of the boundary conditions. 

For free-surface vibrations of the form (3.54), it can be assumed that the velocity 
potential 41 contains the term 

(3.58) 

As before, application of the boundary condition (3.6) for 4 = 40 + 41 + 42, 
expanding about r = R1, while keeping the terms to the third order, leads to the 
following expression for $2 : 

42 = -__ sin o t  c 00 

( -1 ) 'V  COS arxfol(Wr> -___ 4fig sinot 
(a: - ~~)ardfOl(alRl) nun, 1=1 O n m  

00 
g cos Ot 

- e,r;;(dl + ___ ) G,I cos arxj$,l(alr) cos(n8) + O(e:) (3.59) 
oirn 

where eldl = ao, see (2.1). The constant coefficients Gnl are given by 
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The third term in (3.59) is O(E: '~ ) .  It is found from the linear approximation of the 
nonlinear condition (3.3) that the amplitude of 41 is 4 n m ( t )  = [nm(t)[knmtanh(knmd)]-' + 
O(el)  (see (3.26)). 

In order to let (3.42), (3.58) and (3.59) satisfy the kinematic boundary condition 
(3.3), this condition is Taylor-expanded, while retaining the terms up to the third 
order, namely to O(E: '~) ,  yielding 

1 
( 4 o ) x  + ( 4 1 ) x  + i (4o )xx  + i ( 4 l ) x x  + i2($l)xx,x + i ( 4 2 ) x x  = i f  + ( 4 1 ) r i r  + G ( ~ I ) o ~ R  

(3.61) 

Substitution of (3.42), (3.58) and (3.59) then yields, after multiplying by ynm(r, B)/Nnm 
and integrating over the surface x = 0, 

4 n m ( t )  = y l o [ l  - ~ l l i : ~ ] k n m  - ElYlOD[nm sinot + O(c:), (3.62) 

1 1 + ( 4 o ) r i r  + ( 4 2 ) r i r  + 7 ( 4 2 ) e i e  + ( 4 l ) r x i i r  + p ( 4 l ) o x i i o  

with 

The term ~ 1 y ~ ~ D ~ ~ ~ s i n c o t  expresses the influence of the potentials 40 and 4 2 .  This 
term can be classified as the one which gives rise to the parametric resonance in 
this mathematical problem. It is similar to an additional term -(elm2 cos cot)[ in the 
dynamical boundary condition (3.2) that arises for the case of parametric resonance 
in a tank that is subjected to a harmonic displacement (€1 cosut)  along the vertical 
axis (note that this is equivalent to a harmonic modulation of the gravitational 
acceleration). 

Equations (3.42), (3.55), (3.58), (3.59) and (3.62) are now substituted into the Taylor 
expansion of the expression for the dynamic boundary condition (3.2) : 

(4o) t  + ( 4 1 ) t  + i ( 4 l ) t x  + ( 4 2 ) t  + i2(+1)txx + i (4o ) t x  + 

(Here we have some additional terms, which can also be classified as giving rise to 
the parametric resonance.) By averaging this expression over the fast time ot/2, after 
multiplication by y(r ,  0 ) / N m  and by integration over the surface x = 0, one derives 
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= -@I - [PI - P 2  + iAl(p? + 4:)141 + p3q l ,  
dp, 
dz 1 

dq1 _ _ -  dzl - -&41 + [PI - P 2  + $mi + q?)]pl + p3p1. 

Here 
2(02 - 4a,2,) 

El 0 2  
PI = 

(3.65~) 

(3.65b) 

(3.66) 

is a dimensionless parameter of the frequency differences. Furthermore, 

~1 = W ~ 1 2  - YU - Y13 - Y14); 

P2 and P3 are parameters that determine the fraction of energy transmitted by the 
vibrating shell into the cross-waves directly. Both parameters have terms that contain 
an integral over the surface of wavemaker, characterized by a1 cos qx, indicating that 
the wavemaker vibrations al  cos qx cos at cause the parametric resonance. Neither P 2  

nor P 3  depends on the components of the potential 4o (3.42) in this approach. Both 
of them depend on the value of the pressure created by (4& and 83 is affected by 
the component of the fluid velocity on the fluid free surface. We have already 
incorporated in (3.65) linear damping, as it was done in (3.51), and B = dnm/el, with 
an, the ratio of actual to critical damping of the dominant mode. 

Evolutionary equations of the form (3.65) are characteristic of dynamic systems 
with parametric resonances (see Miles 1984~ ;  Henderson & Miles 1990). The presence 
of the terms P3p1 and P3ql indicates that we have parametric resonance and non- 
zero amplitudes of the dominant modes. The system (3.65) has a typical solution 
corresponding to harmonic vibrations (i.e. dpl/dzl = 0 and dql/dzl = 0) for which 

(3.70) 

The stability of the fixed-point solution can be investigated by determining the 
roots of the characteristic equation, as was done by Miles (1984~). 
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At the beginning of this section we have made two assumptions: the first one about 
the close values of the frequencies o and 2wn,, the second about approximating the 
free-surface patterns by the non-symmetric resonant eigenmode (3.54). Using these 
two assumptions, we obtained the expression (3.70) for the amplitude of the resonant 
mode. If the difference between o and 2on,  is not small (as for every non-resonant 
eigenmode), then j1 is larger than any of the other coefficients in (3.65) (PI will 
be O(f;2’3)). In that case a fixed-point solution corresponds to zero values of the 
amplitudes pl and ql .  An extended analysis? of the non-axisymmetric resonant case, 
including secondary modes, has shown that the mean level oscillations and secondary 
modes may change the amplitude of the parametric excitation f13 and the coefficient 
Al  of the nonlinearity of the system (3.65). However, the change in the values may 
be negligibly small for the same ‘geometrical’ reason as for the value of coo. 

4. Comparison of theoretical results with laboratory observations 
In the previous section the free-surface displacement (‘(r, 8, t )  has been analysed for 

the cases of the axisymmetric resonance mode, represented by (3.36), and the non- 
axisymmetric mode, as expressed by (3.54). We will now examine how the theoretical 
patterns compare with the observed resonance patterns as discussed in $2. 

The first case that will be considered is axisymmetric resonance at the excitation 
frequency f e  = 14.86 Hz. In the laboratory experiment (see figure 5a) we observed a 
concentric pattern with 13 nodal circles. The axisymmetric m = 13 surface-elevation 
pattern according to (3.36) has been plotted in figure 5(b), with the dark bands 
representing areas with > 0, i.e. surface elevations. (Note that in figure 5a the 
surface elevations show up as white bands). The FFT of the wave gauge signal 
showed that the resonance occurs at the excitation frequency f e  - as expected - and 
this value should be compared with the eigenfrequency fom = wom/27r. For a proper 
comparison one should also take into account the effects of surface tension and the 
Stokes boundary-layer damping. According to Henderson & Miles (1990, 1991) 

where f n m  is the viscous-shifted frequency; h,, is the ratio of actual to critical 
damping; f n m  is the inviscid frequency; k,, = ki, is the eigen-number of the natural 
eigenfrequency, appearing as the root of (3.24); i = n and j = rn are the wavenumbers 
in the circumferential and radial directions, respectively. Analytical expressions for 
6,, had the same components as used by Henderson & Miles (1990) for bottom and 
free-surface boundary layers. For a sidewall damping component we took analytical 
formulae derived by Miles (1967) and calculated the damping in the sidewall boundary 
layers for the annular tank at both the inner and outer cylinders. In the calculations 
we used v = 0.03 crn2sc1 (this effective value of the kinematic viscosity was found by 
Henderson & Miles (1990) to yield the best agreement with the observed damping 
effects) and took into account the influence of ao, so that the radius of the inner shell 
was R1 = rl + 2ao/n. The surface tension in (4.1) is represented by T ,  which for an 
air-fluid surface at 20°C for the dilute KCl solution used in the present experiments 
has a value of 68.9 dyn cm-’, measured by a tensiometer KlOST. 

For the case of direct excitation at a frequency f e  = 14.86 Hz one observes i = n = 0, 
j = m = 13. The experimentally observed wave pattern as well as the elevation 

f This material can be obtained either directly from the authors or through the Editorial Office. 
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FIGURE 5. Axisymmetric wave pattern (a) observed in the laboratory for f e  = 14.86 Hz and 
( b )  according to (3.36) for i = n = 0, j = m = 13. 

Theoretical values 
Observed mode 

f e  ( H 4  n m Eigenfrequency (Hz) Neighbouring eigenfrequencies (Hz) 
(a)  

11.13 0 9 fo9=10.69 fox=9.67; folo=11.77 
13.07 0 11 fo 1 I = 1 2.89 f o  lo=ll.77; fo 12=14.06 
14.86 0 13 fo 13=1 5.28 fo12=14.06; fo14=16.55 

( b )  
21.82 17 8 f17 8=11.17 f177=10.57; f179=ll.88 
26.00 20 10 f20 to= 1 3.5 1 f l o g =  12.87 ; f20 I 1 =14.46 
27.01 22 9 f229=13.62 f228=12.86; f2210=14.30 
30.10 25 11 f25 11 =l6.2l f 2 5  to= 15.47; f25 12= 16.99 

TABLE 1. Eigenfrequencies of observed resonance modes: (a) forced resonance, 
( h )  parametric resonance. 

pattern according to (3.36) for n = 0, m = 13 are shown in figure 5. The expression 
(4.1) predicts f 0 1 3  = 15.28 Hz, while the closest neighbouring eigenfrequencies are 
f 0 1 2  = 14.06 Hz and f o 1 4  = 16.55 Hz (values are listed in table la). Obviously, 
the value of fo13 lies closest to that of the excitation frequency f e  = 14.86 Hz, the 
difference being only 2.8% of f e .  The system apparently picks out the resonance 
frequency closest to the frequency of excitation. 

A similar behaviour was observed for the case f e  = 11.13 Hz, in which 9 nodal 
circles arise (see figure 2a). According to (4.1), the eigenfrequency of this mode is 
f o g  = 10.69 Hz, which is again close to the excitation frequency f e  (4% deviation). 

Next, we will compare the non-symmetrical resonance patterns as observed in 
the laboratory with those predicted by (3.54). For the case f e  = 26.00 Hz (see 
figure 4) we measured n = 20 and m = 10. The experimentally observed wave 
pattern and the elevation pattern according to (3.54) for these n,m-values are shown 
in figure 6(a,b). Equation (4.1) predicts for this particular parametric resonance mode 
an eigenfrequency f2010 = 13.51 Hz, which is close to the value 0.5fe = 13.0 Hz 
(4% deviation). The closest neighbouring eigenfrequencies are f209 = 12.87 Hz and 
f 2 0 1 1  = 14.46 Hz, differing by 1% and 11%, respectively, from 0.5fe. 
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FIGURE 6. Comparison of parametrically excited resonance modes as observed in the laboratory 
with patterns predicted by (3.54). Laboratory observations for fe = 26.00 Hz (a), 21.82 Hz (c), 
31.10 Hz ( e )  and surface elevation patterns according to (3.54) for ( b )  1 = 20, m = 10; (d) n = 17, 
m =  8; ( I )  n = 25, m = 11. 
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0 10 20 30 40 

f, (Hz) 
FIGURE 7. Frequencies of the observed resonant wave patterns for different f,-values. The frequencies 
have been calculated using (4.1) for the observed mode (n, m), as indicated by the bullets; the filled 
squares represent closest neighbouring frequencies. The solid and the broken lines represent f = fe 
and f = 0.5fe, respectively. 

A similar comparison for the case fe=21.82 Hz is presented in figures 6(c)  and 6(d).  
The frequency corresponding to this mode is f178 = 11.17 Hz, which lies close to 0.5je 
(within 2%) and which characterizes the minimum value of the function 6 1 7 ~  = 6178 

necessary for the realization of the mode 5 1 7 8  in the experiment (see, Henderson & 
Miles 1990, 1991). Values of the closest neighbouring eigenfrequencies are given in 
table l(b). 

The observed and theoretical resonance pattern for fe = 30.10 Hz are shown in 
figures 6(e)  and 6 ( f ) .  Again, the correspondence between the patterns as well as 
between the frequencies (see table lb)  is good. Although the frequencies of the 
observed resonant wave patterns (as well as their closest neighbouring values) are 
listed in table l(b), for convenience they are also presented graphically in figure 7 
as a function of the excitation frequency fe. The bullets represent the frequencies 
calculated from (4.1) for the observed n, m-mode, whereas the closest neighbouring 
frequencies are denoted by filled squares. The graph nicely demonstrates the good 
correspondence with the frequencies fe  (solid line) and 0.5fe (broken line) for the 
axisymmetric, forced resonance and the non-axisymmetric, parametric resonance, 
respectively. Note that for higher excitation frequencies the theoretical values are 
slightly larger than the measured ones. This small discrepancy is attributed to the 
approximative character of the modelling of the damping effects in (4.1). 

The laboratory experiments were carried out at the Fluid Dynamics Laboratory 
in Eindhoven. The authors gratefully acknowledge Eep van Voorthuisen and Jan 
Willems for the designing and building of the experimental set-up. We thank Dr Adel 
Elyousfi for helpful comments and surface tension measurements. We are indebted 
to Professor Vyacheslav Meleshko for general discussions and suggestions connected 
with the Lam& method. Also, the useful comments of the referees are thankfully 
acknowledged. 
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Appendix. The integrals and coefficients of the equations for symmetrical 
patterns 

over the radial distance between the cylinders in the following manner: 
The coefficients of equations (3.32), (3.34) and (3.35) are related with integration 
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